PERVIOUS PAVEMENT DESIGN
CONSIDERATIONS
for
EFFECTIVE APPLICATIONS

Segment Overview

- Design goals
- Design criteria
- □ Example Sports Complex

Establish Your Design Goals

- Storm water capture and level of treatment
- Vehicle types and volume
- Durability
- Aesthetics
- Maintainability
- LEED points or sustainability goals
- Budget

Design Criteria

- Design storm (volume, rate)
- Permeability of installed system
- Allowance (SF) for clogging
- Use of underdrains
- Strength of materials
- WDNR Conservation Practice Standards (1002-5)

Subsurface & Site Data

- Soils data: type, permeability, load bearing capacity
- Depth to groundwater
- Depth to bedrock
- Presence of buried waste
- Groundwater contamination risks
- Utilities
- Site topography
- Area foliage

Specifications

- Pavement: perm, compressive strength, color
- Sub-base reservoir, base reservoir, bedding course
- Geotextile and/or filter fabric
- Borders
- Installer qualifications

Example – Sports Complex

- Multi-use facility
 - Roller derby to dog shows.
 - Lot is often full (Maximize Parking)
- □ 5 acre, 600 stall, parking lot.
 - 1 acre asphalt, 4 acres gravel
 - Had agreement with City of Franklin to eventually pave entire lot.
 - Departments worked together co-funding the project
 - Our first pervious pavement parking lot project
 - Project had to demonstrate effectiveness

Site

Site

Site

- Geotechnical engineer for soil borings.
- Collaboration between Site Civil, Stormwater
 Engineer, Landscape Architect.
- Small consulting contract to review conceptual design.

- Geotechnical engineer for soil borings.
 - Soil strength
 - Infiltration rates
 - Depth to ground water
 - Frost susceptibility
 - Made recommendations on base layers required for pervious pavement

- □ Consultant Review Contract
 - Review and comment on concept plans
 - Provided and extra level of comfort

Design Standards

- Milwaukee County Parking Lot Stormwater Guide.
- DNR Tech Std
 - STD 1002 (Site Evaluation for Stormwater Infiltration)
- □ Permeable Interlocking Concrete Pavemnts, 3rd Ed.
 - Interlocking Concrete Pavement Institute
- Other
 - EPA Permeable Interlocking Concrete Pavement
 - New Jersey Stormwater Manual

- Considered
 - Parking capacity
 - Maximize
 - Maintenance capacity
 - Winter plowing
 - Adjustability
 - Treatment capacity
 - TSS
 - Peak flow reduction
 - More subsurface storage
 - Pavers only in parking stalls
 - Less total pavers
 - Future bike path expansion

- □ Fail Safe Aspects
 - Underdrains
 - Underdrain clean outs
 - □ 1% surface slope
 - Curb cut drains

NOTE: WELL COVER SHALL BE SECURED IN CONCRETE SURROUND (1'-6" TOTAL DIA.).

Maintenance

- UNILOCK Pervious Paver Maintenance Guide
 - Refill joint material
 - ~6 months after installation
 - Every 5-10 years there after
 - Winter plowing
 - Plow as you would concrete.
 - Can use nylon edge blade for cosmetic reasons
 - (Johnson Controls uses. Costs \sim \$200/snow in new blades)
 - Avoid stockpiling snow / topsoil / mulch / etc.

Evaluation

- Compare effluent from underdrains and effluent from paved surfaces.
 - TSS, Oils and greases, Conductivity
- Monitor observation wells over time
 - Record depths over time
- Visual observations over winter
 - Cracked bricks
 - Frost heave

Comparison

Up Front Costs					
	With Pavers		Wit	Without Pavers	
Parking Lot	\$	1,090,000	\$	850,000	
Storm Water Facility	Incl		\$	100,000	
Total	\$	1,090,000	\$	950,000	

Long Term Costs				
	With Pavers	Without Pavers		
O&M	Vacuum, Gap Stone	Crack / Pothole Fill		
Life Est	50 years	20 Years		

Next Time...

- Add more control
 - Manhole / elevation control structures
- □ Push for more green space
 - □ Islands etc.
- Evaluate using less pervious surface area
 - Maybe 1/3 total paved area
- Specify brick pattern layout

Thanks!

Presented by:

Sean Hayes, P.E.

Environmental Engineer

Milwaukee County

sean.hayes@milwcnty.com

http://www.linkedin.com/in/seanjhayes